-3y^2-6y+5=0

Simple and best practice solution for -3y^2-6y+5=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -3y^2-6y+5=0 equation:


Simplifying
-3y2 + -6y + 5 = 0

Reorder the terms:
5 + -6y + -3y2 = 0

Solving
5 + -6y + -3y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
-3 the coefficient of the squared term: 

Divide each side by '-3'.
-1.666666667 + 2y + y2 = 0

Move the constant term to the right:

Add '1.666666667' to each side of the equation.
-1.666666667 + 2y + 1.666666667 + y2 = 0 + 1.666666667

Reorder the terms:
-1.666666667 + 1.666666667 + 2y + y2 = 0 + 1.666666667

Combine like terms: -1.666666667 + 1.666666667 = 0.000000000
0.000000000 + 2y + y2 = 0 + 1.666666667
2y + y2 = 0 + 1.666666667

Combine like terms: 0 + 1.666666667 = 1.666666667
2y + y2 = 1.666666667

The y term is 2y.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2y + 1 + y2 = 1.666666667 + 1

Reorder the terms:
1 + 2y + y2 = 1.666666667 + 1

Combine like terms: 1.666666667 + 1 = 2.666666667
1 + 2y + y2 = 2.666666667

Factor a perfect square on the left side:
(y + 1)(y + 1) = 2.666666667

Calculate the square root of the right side: 1.632993162

Break this problem into two subproblems by setting 
(y + 1) equal to 1.632993162 and -1.632993162.

Subproblem 1

y + 1 = 1.632993162 Simplifying y + 1 = 1.632993162 Reorder the terms: 1 + y = 1.632993162 Solving 1 + y = 1.632993162 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + y = 1.632993162 + -1 Combine like terms: 1 + -1 = 0 0 + y = 1.632993162 + -1 y = 1.632993162 + -1 Combine like terms: 1.632993162 + -1 = 0.632993162 y = 0.632993162 Simplifying y = 0.632993162

Subproblem 2

y + 1 = -1.632993162 Simplifying y + 1 = -1.632993162 Reorder the terms: 1 + y = -1.632993162 Solving 1 + y = -1.632993162 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + y = -1.632993162 + -1 Combine like terms: 1 + -1 = 0 0 + y = -1.632993162 + -1 y = -1.632993162 + -1 Combine like terms: -1.632993162 + -1 = -2.632993162 y = -2.632993162 Simplifying y = -2.632993162

Solution

The solution to the problem is based on the solutions from the subproblems. y = {0.632993162, -2.632993162}

See similar equations:

| -40x+5y=50 | | 10x+y=22 | | 3x-8=4x+13 | | 4u+8(-8u-1)=6(u-1) | | 8y^2-2x^2=0 | | 4=-6+u | | x^2+3x+y^2-4y+13=14 | | 2x-2y-7=0 | | (2x+5)+(5x+3)=x^2 | | 4u+8(-8-1)=6(u-1) | | f(x)=3x^2+15x+5 | | 2x(5x+40)=360 | | 12y+9=57 | | 8n-84=n | | 16-8x=0 | | xy-y+7=o | | (6+x)(1+x)=0 | | 5+b=2t | | 8x+3=3x+23 | | X^2+3xy-8x-4z=0 | | X-(8y)i=100+20i | | 3x-6=5x-7 | | Ax+bx+cx=5 | | 7+3.5m=5.2+2.5m | | 4m+3(5)=0 | | 20x^5+25x^3=0 | | 2-(3x-4)=5-(4x+2) | | 9x^2-120t^2+900=0 | | (sqrt(x^2+1))+(0.7*x)-12=0 | | 2-3a=-a-8 | | 6x+12=2x+4(x+1) | | x^2-16x=28 |

Equations solver categories